A Gentle Introduction to Neural Networks (with Python)

Tariq Rashid @postenterprise

PyCon Italy April 2017
Background
Ideas
DIY
Handwriting
Thoughts

... and a live demo!
Background
locate people in this photo

add these numbers

2403343781289312
+ 2843033712837981
+ 2362142787897881
+ 3256541312323213
+ 9864479802118978
+ 897667798797897
+ 8981257890087988

= ?
AI is Huge!

New Scientist

Revealed: Google AI has access to huge haul of NHS patient data

A data-sharing agreement obtained by New Scientist shows that Google’s collaboration with the NHS goes far beyond what it has publicly announced.

Google’s DeepMind chalks up AI landmark after beating Go world champion Lee Sedol

Google’s DeepMind has compiled an impressive list of accomplishments, most recently after beating world champion Lee Sedol in Go.

Self-driving cars set to disrupt UK's £14bn motor insurance industry

Self-driving cars will result in an 80% drop in crashes by 2035, experts say.
Mastering the game of Go with deep neural networks and tree search

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel & Demis Hassabis
Ideas
Simple Predicting Machine

question → think → answer
Simple Predicting Machine
Kilometres to Miles

```
kilometres
100
```

```
miles = kilometres \times 0.5
```

```
miles
50
```

try a model - this one is linear

random starting parameter
Kilometres to Miles

kilometres = 100

miles = kilometres x 0.5

calculated miles = 50

correct miles = 62.137

error = 12.137

not great
Kilometres to Miles

kilometres 100

miles = kilometres x 0.6

calculated miles 60

correct miles 62.137

error 2.137

better
Kilometres to Miles

kilometres
100

miles = kilometres \times 0.7

100 \times 0.7 = 70

correct miles
62.137

error
-7.863

worse!
Kilometres to Miles

kilometres → miles = kilometres x 0.61 → calculated miles

100 → 61

correct miles

error 1.137

best yet!
1. Don’t know how something works exactly? Try a model with adjustable parameters.

2. Use the error to refine the parameters.
Garden Bugs

widths and lengths of garden bugs

caterpillars

ladybirds
Classifying Bugs
Classifying Bugs

Widths and Lengths of Garden Bugs

Separating line
Classifying Bugs

Widths and Lengths of Garden Bugs

- Separating line
Classifying Bugs

Classifying an Unknown Bug

unknown bug

length

width
1. **Classifying** things is kinda like **predicting** things.
<table>
<thead>
<tr>
<th>Example</th>
<th>Width</th>
<th>Length</th>
<th>Bug</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.0</td>
<td>1.0</td>
<td>ladybird</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>3.0</td>
<td>caterpillar</td>
</tr>
</tbody>
</table>
Training Data for Classifying Bugs

caterpillar

ladybird
Training Data for Classifying Bugs

$y = (0.25)x$

not a good separator
shift the line up just above the training data point
Learning from Data

- Final refinement: $y = (2.90) \times x$
- Refined: $y = (0.3667) \times x$
- Initial: $y = (0.25) \times x$
How Do We Update The Parameter?

error = target - actual

\[E = (A + \Delta A)x - Ax \]

\[\Delta A = E / x \]
Hang On!

Oh no! each update ignores previous examples

final refinement
\[y = (2.90) \times \]

refined
\[y = (0.3667) \times \]

initial
\[y = (0.25) \times \]
Δ\(A = \text{learning rate} \cdot \frac{E}{x}\)
Calm Down the Learning

learning rate = 0.5

second moderated refinement
\[y = (1.6042) x \]

first moderated refinement
\[y = (0.3083) x \]

initial
\[y = (0.25) x \]
1. **Moderating** your learning is good - ensures you learn from all your data, and reduces impact of outliers or noisy training data.
Boolean Logic

Example:

IF I have eaten my vegetables **AND** I am still hungry **THEN** I can have ice cream.

IF it’s the weekend **OR** I am on annual leave **THEN** I'll go to the park.

<table>
<thead>
<tr>
<th>Input A</th>
<th>Input B</th>
<th>AND</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Boolean Logic

input A → logical function → output

input B
Boolean Logic

logical AND

- Points: (0,0), (0,1), (1,0), (1,1)
- Dividing line: (0,0) to (1,1)

logical OR

- Points: (0,0), (0,1), (1,0), (1,1)
- Dividing line: (0,1) to (1,0)
XOR Puzzle!

<table>
<thead>
<tr>
<th>Input A</th>
<th>Input B</th>
<th>XOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Diagram showing a logical XOR with points labeled (0,0), (1,0), (0,1), and (1,1).
XOR Solution!

... use more than one node!
1. Some problems can’t be solved with just a single simple linear classifier.

2. You can use **multiple nodes** working together to solve many of these problems.
Brains in Nature

Diagram of a neuron showing:
- Dendrite
- Axon
- Terminals
Brains in Nature

nature's brains can eat, fly, navigate, fight, communicate, play, learn ...

.. and they’re resilient

https://faculty.washington.edu/chudler/facts.html
Brains in Nature

logistic function

\[y = \frac{1}{1 + e^{-x}} \]
Brains in Nature

neurons

signals
Artificial Neuron

input a

input b

input c

Sum inputs
\[x = a + b + c \]

sigmoid threshold function
\[y(x) \]

output y
Artificial Neural Network .. finally!

[Diagram of a neural network with labeled layers and inputs/outputs]
Pause.
Where Does The Learning Happen?

- sigmoid function slope?
- link weight?

Diagram of a neural network with layers and connections labeled.
1. Natural brains can do sophisticated things, and are incredibly resilient to damage and imperfect signals .. unlike traditional computing.

3. Link weights are the adjustable parameter - it’s where the learning happens.
Feeding Signals Forward

1.0

inputs

0.5

layer 1

1

w_{1,1} = 0.9

w_{1,2} = 0.2

layer 2

1

w_{2,1} = 0.3

w_{2,2} = 0.8

outputs
Feeding Signals Forward

Input: \(a \), weight: \(w_a \), \(b \), weight: \(w_b \), \(c \), weight: \(w_c \)

Sum inputs:
\[
x = a \cdot w_a + b \cdot w_b + c \cdot w_c
\]

Sigmoid threshold function:
\[
y(x) = \sigma(x)
\]

Output: \(y \)
Feeding Signals Forward

Inputs:
1.0 -> 1.0
0.5 -> 0.5

Layer 1:
- Node 1 with weight \(w_{1,1} = 0.9 \)
- Node 2 with weight \(w_{2,1} = 0.3 \)

Layer 2:
- Node 1
- Node 2 with weight \(w_{2,2} = 0.8 \)

Outputs:
0.7408 -> 0.6457
Matrix Multiplication

\[x = (\text{input}_1 \times w_{1,1}) + (\text{input}_2 \times w_{2,1}) \]

\[x = (\text{input}_1 \times w_{1,2}) + (\text{input}_2 \times w_{2,2}) \]
Matrix Multiplication

\[
\begin{pmatrix}
w_{1,1} & w_{2,1} \\
w_{1,2} & w_{2,2}
\end{pmatrix}
\begin{pmatrix}
\text{input}_1 \\
\text{input}_2
\end{pmatrix}
=
\begin{pmatrix}
(\text{input}_1 \times w_{1,1}) + (\text{input}_2 \times w_{2,1}) \\
(\text{input}_1 \times w_{1,2}) + (\text{input}_2 \times w_{2,2})
\end{pmatrix}
\]

\[\omega \cdot \text{i} = X\]
1. The many feedforward calculations can be expressed **concisely** as **matrix multiplication**, no matter what shape the network.

2. Some programming languages can do matrix multiplication really **efficiently** and **quickly**.
Network Error

\[w_{1,1} = 3.0 \]

\[w_{2,1} = 1.0 \]

output

error

???
Network Error

\[w_{1,1} = 3.0 \]

\[w_{2,1} = 1.0 \]
Internal Error
Matrices Again!

\[\text{error}_{\text{hidden}} = \begin{pmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{pmatrix} \cdot \begin{pmatrix} e_1 \\ e_2 \end{pmatrix} \]

\[\text{error}_{\text{hidden}} = w_{\text{hidden_output}}^T \cdot \text{error}_{\text{output}} \]
1. Remember we use the error to guide how we refine a model’s parameter - link weights.

2. The error at the output nodes is easy - the difference between the desired and actual outputs.

3. The error at internal nodes isn’t obvious. A heuristic approach is to split it in proportion to the link weights.

4. … and back propagating the error can be expressed as a matrix multiplication too!
Yes, But How Do We Actually Update The Weights?

\[O_k = \frac{1}{1 + e^{-\sum_{j=1}^{3} (w_{j,k} \cdot \frac{1}{1 + e^{-\sum_{i=1}^{3} (w_{i,j} \cdot x_i)}})}} \]
Perfect is the Enemy of Good

landscape is a complicated difficult mathematical function ..
... with all kinds of lumps, bumps, kinks ...
Gradient Descent

smaller gradient .. you’re closer to the bottom … take smaller steps?
1. **Gradient descent** is a practical way of finding the minimum of **difficult** functions.

2. You can avoid the chance of **overshooting** by taking smaller steps if the gradient gets shallower.

3. The error of a neural network is a **difficult** function of the link weights … so maybe gradient descent will help …
We need to find this gradient.
Error Gradient

\[E = (\text{desired} - \text{actual})^2 \]

\[\frac{dE}{d\omega_j} = -e_j \cdot o_j \cdot (1 - o_j) \cdot o_i \]

A gentle intro to calculus

http://makeyourownneuralnetwork.blogspot.co.uk/2016/01/a-gentle-introduction-to-calculus.html
Updating the Weights

\[\text{new } w_{jk} = \text{old } w_{jk} - \alpha \cdot \frac{\partial E}{\partial w_{jk}} \]

- move \(w_{jk} \) in the opposite direction to the slope
- remember that learning rate
DIY
Python Class and Functions

Neural Network Class

Initialise
- set size, initial weights

Train
- do the learning

Query
- query for answers
Python has Cool Tools

matrix maths

numpy
scipy
matplotlib
notebook
initialise the neural network

```python
def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate):
    # set number of nodes in each input, hidden, output layer
    self.inodes = inputnodes
    self.hnodes = hiddennodes
    self.onodes = outputnodes

    # link weight matrices, wih and who
    # weights inside the arrays are w_i_j, where link is from node i to node j in the next layer
    # w11 w21
    # w12 w22 etc
    self.wih = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.hnodes, self.inodes))
    self.who = numpy.random.normal(0.0, pow(self.onodes, -0.5), (self.onodes, self.hnodes))

    # learning rate
    self.lr = learningrate

    # activation function is the sigmoid function
    self.activation_function = lambda x: scipy.special.expit(x)

    pass
```

random initial weights

numpy.random.normal()
query the neural network

def query(self, inputs_list):
 # convert inputs list to 2d array
 inputs = numpy.array(inputs_list, ndmin=2).T

 # calculate signals into hidden layer
 hidden_inputs = numpy.dot(self.wih, inputs)
 # calculate the signals emerging from hidden layer
 hidden_outputs = self.activation_function(hidden_inputs)

 # calculate signals into final output layer
 final_inputs = numpy.dot(self.who, hidden_outputs)
 # calculate the signals emerging from final output layer
 final_outputs = self.activation_function(final_inputs)

 return final_outputs
train the neural network

def train(self, inputs_list, targets_list):
 # convert inputs list to 2d array
 inputs = numpy.array(inputs_list, ndmin=2).T
 targets = numpy.array(targets_list, ndmin=2).T

 # calculate signals into hidden layer
 hidden_inputs = numpy.dot(self.wih, inputs)
 # calculate the signals emerging from hidden layer
 hidden_outputs = self.activation_function(hidden_inputs)

 # calculate signals into final output layer
 final_inputs = numpy.dot(self.who, hidden_outputs)
 # calculate the signals emerging from final output layer
 final_outputs = self.activation_function(final_inputs)

 # output layer error is the (target - actual)
 output_errors = targets - final_outputs
 # hidden layer error is the output_errors, split by weights, recombined at hidden nodes
 hidden_errors = numpy.dot(self.who.T, output_errors)

 # update the weights for the links between the hidden and output layers
 self.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)),
 numpy.transpose(hidden_outputs))

 # update the weights for the links between the input and hidden layers
 self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)),
 numpy.transpose(inputs))

 pass
Handwriting
Handwritten Numbers Challenge
MNIST dataset:

60,000 training data examples
10,000 test data examples
MNIST Datasets

In [9]:
```
data_file = open("mnist_dataset/mnist_train_100.csv", 'r')
data_list = data_file.readlines()
data_file.close()
```

Out[9]:
```
100
```

In [10]:
```
data_list[0]
```

Out[10]:
```
'5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
```

In [32]:
```
all_values = data_list[0].split(',')
image_array = numpy.asarray(all_values[1:]).reshape((28,28))
matplotlib.pyplot.imshow(image_array, cmap='Greys', interpolation='None')
```

Out[32]:
```
<matplotlib.image.AxesImage at 0x108818cc0>
```
<table>
<thead>
<tr>
<th>output layer</th>
<th>label</th>
<th>example “5”</th>
<th>example “0”</th>
<th>example “9”</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.95</td>
<td>0.02</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0.01</td>
<td>0.02</td>
<td>0.40</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0.99</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0.02</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>0.01</td>
<td>0.02</td>
<td>0.86</td>
</tr>
</tbody>
</table>
Experiments

96% is very good!
we've only used simple ideas and code

random processes do go wonky!
More Experiments

98% is amazing!
Thoughts
Peek Inside The Mind Of a Neural Network?
Peek Inside The Mind Of a Neural Network?

this isn't done very often
Thanks!

demonstration!
Finding Out More

makeyourownneuralnetwork.blogspot.co.uk

github.com/makeyourownneuralnetwork

www.amazon.co.uk/dp/B01EER4Z4G

twitter.com/myoneuralnet

slides goo.gl/JKsb62
It all works on a Raspberry Pi Zero
... and it only costs £4 / $5 !!